- 1. Solve for n (n a positive integer):-

 - (a) $\binom{n}{2} = 21$ (b) $\binom{n}{n-2} = 45$
 - (c) Simplify $\binom{n^2}{n^2-1}$ as far as possible.
 - (d) Prove that $\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$
- Expand fully:- (a) $(p+q)^5$ 2.
- (b) $\left(x-\frac{1}{x}\right)^4$
- (c) What is the coefficient of the term containing x^5 in the expansion of $(1-2x)^7$?
- (d) Expand $\left(1 \frac{3}{2}x x^2\right)^3$ in ascending powers of x, as far as x^4 .
- 3. Use binomial expansion to find the values of:-
 - (a) $(1.1)^5$
- (b) $(0.98)^4$
- correct to 3 significant figures.
- 4. Write down and simplify the term independent of x in the expansion of :- $\left(3x^2-\frac{1}{2x}\right)^9.$
- Express each of the following in partial fractions:-5.
 - (a) $\frac{5x+5}{x^2+3x-4}$
- (b) $\frac{x^3}{x^2 3x + 2}$
- (c) $\frac{3x+1}{(x-1)(x^2-1)}$ (d) $\frac{3x+3}{(x-1)(x^2+x+1)}$